• 集群首页
  • English
  • 中文
中国地质调查局西安地质调查中心主办
高级检索
  • 集群首页
  • {{newsColumn.name}}
      1. {{subColumn.name}}

    金川超大型铜镍矿床钴的赋存状态与富集过程研究

    downloadPDF

    上一篇

    下一篇

    王亚磊, 李文渊, 林艳海, 王永才, 张照伟, 李德贤. 2023. 金川超大型铜镍矿床钴的赋存状态与富集过程研究. 西北地质, 56(2): 133-150. doi: 10.12401/j.nwg.2023023
    引用本文: 王亚磊, 李文渊, 林艳海, 王永才, 张照伟, 李德贤. 2023. 金川超大型铜镍矿床钴的赋存状态与富集过程研究. 西北地质, 56(2): 133-150. doi: 10.12401/j.nwg.2023023
    WANG Yalei, LI Wenyuan, LIN Yanhai, WANG Yongcai, ZHANG Zhaowei, LI Dexian. 2023. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit. Northwestern Geology, 56(2): 133-150. doi: 10.12401/j.nwg.2023023
    Citation: WANG Yalei, LI Wenyuan, LIN Yanhai, WANG Yongcai, ZHANG Zhaowei, LI Dexian. 2023. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit. Northwestern Geology, 56(2): 133-150. doi: 10.12401/j.nwg.2023023

    金川超大型铜镍矿床钴的赋存状态与富集过程研究

    • 基金项目: 中国地质调查局项目“西北地区昆仑–秦岭等成矿区带重点调查区锂镍等战略性矿产调查评价”(DD20230048)、“全国海陆矿产资源图件编制更新”(DD20221696),国家自然科学基金面上项目“东昆仑夏日哈木铜镍矿床硫化物不混溶作用研究”(41873053),第二次青藏科考项目课题“东昆仑成矿带西段及柴北缘成矿带西段铜镍(钴)成矿潜力研究”(2019QZKK0801)联合资助
    详细信息
      作者简介: 王亚磊(1986−),男,副研究员,博士研究生,主要从事铜镍矿成矿规律与找矿勘查工作。E–mail: wangyalei1986@126.com
      通讯作者: 林艳海(1986−),男,工程师,硕士,主要从事地质矿产与找矿研究工作。E–mail: 85785187@qq.com
    • 中图分类号: P588.1;P597

    Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit

    More Information
      Corresponding author: LIN Yanhai,  85785187@qq.com
      摘要
    • 金川矿床位于龙首山隆起带东段,是中国最大的岩浆镍钴(铂族元素)矿床。该矿床中最重要的金属硫化物组合是磁黄铁矿、镍黄铁矿和黄铜矿,仅局部含有微量的辉钴矿等独立钴矿物。全岩成矿元素分析显示:矿石中Co与S、Ni之间呈良好的正相关性,与As相关性较差,Co/Ni随硫化物含量的增加而降低。电子探针分析结果表明:镍黄铁矿中Co含量较高,其含量为0.32%~1.93%,平均为0.81%;磁黄铁矿和黄铜矿(方黄铜矿)中Co的含量较低,变化范围分别为0.02%~0.11%和0.01%~0.08%。元素面扫描结果表明:Co含量较高的部位与镍黄铁矿范围完全一致,说明Co主要赋存于镍黄铁矿中。金川矿床整体Co/Ni平均值为0.042,与全球典型橄榄岩相地幔Co/Ni值(0.055)相似,表明其岩浆源区主要为橄榄岩相。高程度的部分熔融可能是导致其母岩浆中Co绝对含量较高,但Co/Ni值相对较低的原因之一。硫化物熔离时,Co更倾向于进入硫化物;但相对于Ni,进入硫化物的Co较少,导致不同矿石类型之间S含量与Co/Ni值之间呈明显的负相关性。硫化物分离结晶作用进一步促使Co向镍黄铁矿中富集。

      • Co的赋存状态  / 
      • 分配系数  / 
      • 富集过程  / 
      • 金川超大型铜镍矿  / 
      • 龙首山隆起带  / 
      • 甘肃
    • HTML全文
    • 加载中
    • 图 1  金川铜镍矿床大地构造位置(a)及龙首山隆起带区域地质简图(b)(据 Duan et al.,2016修改)

      Figure 1. 

      下载: 全尺寸图片 幻灯片

      图 2  金川矿床矿区地质简图(a)、矿床纵投影图(b)及典型勘探线剖面图(c)

      Figure 2. 

      下载: 全尺寸图片 幻灯片

      图 3  金川矿床磁黄铁矿与镍黄铁矿产状特征

      Figure 3. 

      下载: 全尺寸图片 幻灯片

      图 4  S、Ni、Cu及As元素与Co和Co/Ni的相关性图解

      Figure 4. 

      下载: 全尺寸图片 幻灯片

      图 5  金川矿床不同矿石类型及产状磁黄铁矿Fe原子比与Ni、Co含量图解

      Figure 5. 

      下载: 全尺寸图片 幻灯片

      图 6  金川矿床镍黄铁矿中各元素含量及元素比值相关性图解

      Figure 6. 

      下载: 全尺寸图片 幻灯片

      图 7  黄铜矿、方黄铜矿Cu–Ni(a)和Cu–Co(b)的相关性图解

      Figure 7. 

      下载: 全尺寸图片 幻灯片

      图 8  金川矿床硫化物电子探针元素面扫描

      Figure 8. 

      下载: 全尺寸图片 幻灯片

      图 9  硫化物分离结晶过程中Co、Ni等亲铜元素的富集过程示意图(据 Chen et al.,2015 Helmy et al.,2021修改)

      Figure 9. 

      下载: 全尺寸图片 幻灯片

      表 1  金川矿床全岩Ni、Co、Cu、S等元素含量(%)

      Table 1.  The Ni, Co, Cu, and S contents (%) of the ores in the Jinchuan deposit

      样品编号矿石类型矿体编号SCoCuNiAs
      ZK-4-5-1浸染状矿化24号矿体2.380.020.160.531.57
      ZK-4-5-2稠密浸染状矿化10.520.052.152.981.90
      ZK-4-5-5稠密浸染状矿化9.120.025.450.941.75
      ZK-4-5-7稠密浸染状矿化11.710.061.062.741.22
      ZK-4-5-9稠密浸染状矿化7.840.034.361.434.11
      ZK-4-5-12稠密浸染状矿化3.890.021.691.184.06
      ZK-4-5-15稠密浸染状矿化9.360.061.763.161.90
      ZK-4-5-17稠密浸染状矿化9.100.061.843.071.25
      ZK-4-5-19稠密浸染状矿化4.080.030.271.352.53
      ZK-4-5-21浸染状矿化1.520.020.250.372.30
      ZK-4-5-22星点状矿化0.220.010.040.101.18
      ZK-4-5-23星点状矿化0.960.010.160.252.05
      ZK-4-5-24星点状矿化0.260.010.020.111.52
      ZK12-5-1岩石1号矿体0.010.000.000.000.42
      ZK12-5-5岩石0.100.010.010.091.20
      ZK12-5-6岩石0.240.010.060.122.15
      ZK12-5-7星点状矿化0.850.010.080.241.41
      ZK12-5-8浸染状2.060.020.130.521.87
      ZK12-5-9浸染状1.920.020.540.431.69
      ZK12-5-10浸染状5.660.041.421.331.85
      ZK12-5-11浸染状1.210.010.090.341.17
      ZK12-5-12浸染状3.530.020.170.831.56
      ZK12-5-15稠密浸染状矿化5.850.040.491.333.10
      ZK12-5-16稠密浸染状矿化7.330.040.471.561.99
      ZK12-5-21稠密浸染状矿化9.310.051.911.750.29
      ZK12-5-23稠密浸染状矿化8.220.050.521.973.34
      ZK12-5-26稠密浸染状矿化8.930.051.072.001.31
      ZK12-5-30稠密浸染状矿化8.610.040.301.510.22
      ZK12-5-34稠密浸染状矿化8.390.041.522.012.84
      ZK12-5-35星点状矿化0.930.010.130.211.55
      ZK12-5-36浸染状3.420.010.560.521.99
      ZK16-2-4岩石2号矿体0.090.010.000.120.85
      ZK16-2-6岩石0.070.010.000.100.44
      ZK16-2-8岩石0.040.010.010.090.57
      ZK16-2-9星点状矿化0.220.010.040.130.44
      ZK16-2-10星点状矿化0.280.010.030.200.80
      ZK16-2-12星点状矿化0.300.010.030.190.72
      ZK16-2-14浸染状1.200.010.110.422.58
      ZK16-2-15浸染状2.810.020.170.540.41
      ZK16-2-19星点状矿化0.620.010.120.190.34
      ZK16-2-23星点状矿化0.620.010.040.180.67
      ZK16-2-30浸染状2.300.020.710.390.69
      ZK16-2-32浸染状2.010.020.160.460.62
      ZK16-2-34浸染状2.560.020.160.580.83
      ZK16-2-39浸染状2.440.020.520.470.52
      ZK16-2-40浸染状2.820.020.170.585.31
      下载: 导出CSV

      表 2  磁黄铁矿电子探针分析结果(%)

      Table 2.  The EPMA result (%) of pyrrhotite in the Jinchuan deposit

      钻孔编号矿体编号矿石类型种属矿物特征FeNiCoSTotalFe(原子比)
      zk4-524号矿体星点状六方Po≈Pn60.920.020.0538.4099.4547.58
      六方Po≈Pn60.490.0638.7299.3247.21
      六方Po≈Pn60.770.0738.5999.4647.41
      六方Po≈Pn62.450.0636.8099.3249.28
      六方Po≈Pn60.810.040.0538.8399.7547.26
      海绵陨铁状单斜Po≈Pn59.970.140.0539.2499.4246.62
      单斜Po≈Pn59.410.070.0739.4999.0946.24
      单斜Po≈Pn59.750.190.0639.6699.6846.24
      单斜Po≈Pn59.770.050.0839.5399.4846.37
      六方Po≈Pn60.610.0638.8199.5247.20
      单斜Po<Pn59.490.200.0438.9998.7846.56
      单斜Po<Pn59.180.180.0739.1898.6746.31
      单斜Po<Pn59.950.160.0839.5599.8546.39
      zk12-51号矿体星点状陨硫铁Po>Pn62.750.0836.2399.0749.78
      陨硫铁Po>Pn63.450.0836.3699.9749.96
      六方Po61.490.0436.6199.4548.59
      六方Po62.980.0836.89100.2549.34
      陨硫铁Po≈Pn63.620.0636.45100.2949.97
      陨硫铁Po≈Pn63.690.030.0836.36100.1950.05
      陨硫铁Po≈Pn62.740.0736.1599.0149.83
      陨硫铁Po≈Pn63.320.0536.3699.8349.93
      陨硫铁Po≈Pn63.210.020.0536.4599.8449.81
      六方Po≈Pn62.890.020.0836.4399.4649.69
      浸染状六方Po>Pn62.900.010.0636.4799.5449.67
      六方Po>Pn62.760.1136.5499.4549.55
      陨硫铁Po>Pn63.280.030.0736.4699.9249.82
      陨硫铁Po>Pn63.300.0936.57100.0349.76
      陨硫铁Po>Pn63.180.020.0636.2499.5149.94
      海绵陨铁状陨硫铁Po≈Pn62.980.020.0836.1699.3049.90
      陨硫铁Po≈Pn63.290.0936.3999.9149.88
      陨硫铁Po≈Pn62.870.0636.2599.2249.82
      陨硫铁Po≈Pn63.180.1136.5099.9149.75
      陨硫铁Po≈Pn63.300.0936.4299.8349.86
      陨硫铁Po≈Pn63.110.0536.4499.6849.79
      六方Po≈Pn63.090.030.1136.85100.1249.47
      六方Po≈Pn62.910.0736.4899.5349.67
      六方Po≈Pn62.720.0636.3499.1349.70
      六方Po≈Pn62.750.0736.5199.3749.59
      六方Po≈Pn62.780.0936.6399.5549.51
      六方Po≈Pn63.020.0836.7299.9049.55
      六方Po≈Pn63.050.010.0836.6899.8549.58
      六方Po≈Pn63.200.0236.5899.8449.73
      下载: 导出CSV
      续表2
      钻孔编号矿体编号矿石类型种属矿物特征FeNiCoSTotalFe(原子比)
      zk12-51号矿体海绵陨铁状六方Po≈Pn62.720.0436.4299.2249.64
      六方Po≈Pn62.460.0736.5499.1249.45
      六方Po≈Pn62.870.0636.4999.5449.65
      陨硫铁Po<Pn63.410.0736.58100.1549.80
      陨硫铁Po<Pn63.880.010.0636.48100.5250.05
      陨硫铁Po<Pn63.260.0836.4299.7849.85
      陨硫铁Po>Pn63.440.010.0936.52100.0949.84
      陨硫铁Po>Pn63.880.010.1036.33100.3950.14
      六方Po<Pn63.460.010.0536.72100.2649.74
      六方Po>Pn61.140.090.0838.5899.9547.52
      六方Po>Pn62.010.070.0737.95100.1148.30
      六方Po>Pn60.710.090.0738.3299.2547.52
      六方Po>Pn60.990.120.0738.4199.6447.57
      六方Po>Pn61.820.090.0637.94100.0448.23
      单斜Po60.190.250.1038.8599.4146.90
      单斜Po60.040.260.0938.8499.2446.85
      单斜Po60.420.310.0639.28100.1746.71
      单斜Po60.130.140.0939.3699.7546.59
      单斜Po>Pn59.950.120.0939.1999.4746.63
      单斜Po>Pn59.910.120.0739.6499.8046.33
      单斜Po>Pn60.110.130.0939.6199.9846.43
      单斜Po>Pn59.800.160.0439.2499.2746.54
      zk16-22号矿体浸染状六方Po>Pn63.130.0436.77100.1049.57
      六方Po>Pn62.870.0937.18100.2149.17
      单斜Po≈Pn60.190.030.0739.63100.0546.48
      单斜Po≈Pn60.160.310.0739.58100.1846.42
      单斜Po≈Pn59.750.060.0839.5899.4946.34
      六方Po≈Pn61.080.0638.7599.8947.43
      六方Po≈Pn60.830.0738.9499.8847.21
      六方Po≈Pn61.280.010.0539.17100.5347.25
      单斜Po≈Pn59.800.120.0739.3899.4246.46
      单斜Po>Pn59.910.280.0839.6399.9946.27
      陨硫铁Po>Pn63.220.020.1036.4199.7649.82
      六方Po>Pn61.620.020.0838.65100.4447.70
      六方Po>Pn61.100.0738.4499.6347.64
       注:“–”表示低于检测线0.01%。
      下载: 导出CSV

      表 3  镍黄铁矿电子探针分析结果(%)

      Table 3.  The EPMA results (%) of pentlandite in the Jinchuan deposit

      钻孔编号矿体矿石类型矿物特征FeNiCoCuTeSTotal
      zk4-524号矿体星点状Po≈Pn31.2833.740.880.030.8132.9599.75
      Po≈Pn31.2234.110.980.010.7833.20100.32
      Po≈Pn32.9231.290.870.770.7033.3799.93
      Po<Pn33.1032.211.050.020.6532.4799.52
      Po<Pn31.9733.601.030.030.3033.11100.14
      海绵陨铁状Po≈Pn31.2132.600.471.150.6933.5499.66
      Po≈Pn35.3329.040.320.180.2634.0799.21
      Po≈Pn30.2936.000.470.050.3333.22100.40
      Po≈Pn31.2332.980.521.810.7233.65100.96
      Po≈Pn31.3234.650.490.160.2833.08100.01
      Po≈Pn30.1935.280.570.210.8333.19100.33
      Po<Pn32.2233.610.400.160.2833.41100.14
      Po<Pn31.3634.370.500.040.3033.79100.35
      Po<Pn31.4434.090.380.080.2933.2399.54
      Pn38.9226.990.330.5831.9898.81
      Pn41.2723.560.440.310.2433.0498.95
      Pn41.1922.440.410.730.5433.9999.32
      下载: 导出CSV
      续表3
      钻孔编号矿体矿石类型矿物特征FeNiCoCuTeSTotal
      zk12-51号矿体星点状Po≈Pn32.9732.580.880.000.7532.80100.02
      Po≈Pn33.0532.530.850.030.7033.17100.38
      Po≈Pn32.9732.980.880.060.7933.18100.88
      Po≈Pn33.8532.080.830.040.6632.98100.46
      Po≈Pn33.1732.650.920.010.2732.93100.00
      Po≈Pn33.3932.360.860.020.7833.31100.79
      Po>Pn35.0629.831.320.040.2933.2899.87
      Po>Pn34.8429.761.910.030.7233.35100.69
      Po>Pn35.6329.481.870.020.7532.98100.78
      Po>Pn35.1029.751.420.020.2433.3799.92
      浸染状Po>Pn34.4131.300.860.010.2532.9599.79
      Po>Pn34.9030.930.850.020.3033.25100.31
      海绵陨铁状Po<Pn33.0732.660.740.010.3033.0799.89
      Po<Pn33.5132.780.780.020.7633.14101.02
      Pn32.9833.230.770.010.3033.09100.38
      Pn35.7230.850.770.070.7133.56101.73
      Pn33.4732.970.780.100.2733.13100.77
      Pn33.4732.150.740.030.2633.41100.09
      Po>Pn32.9431.240.650.030.2632.9498.16
      Po>Pn33.2431.980.620.060.7633.0199.68
      Po>Pn33.2632.260.700.020.6833.18100.14
      Po>Pn33.1232.880.620.7233.09100.50
      Po>Pn33.3832.700.660.010.6832.97100.43
      Po>Pn32.8232.350.670.010.2933.88100.07
      Po>Pn33.0132.260.680.010.2632.8599.08
      Po>Pn32.8232.600.670.020.7833.44100.39
      Po>Pn33.0232.440.680.040.2632.9899.43
      Po>Pn32.4832.180.680.010.7733.3399.52
      Po>Pn32.5832.530.740.3133.3699.56
      Po>Pn32.6332.610.720.030.7533.30100.06
      Po>Pn32.4332.540.710.6733.1499.51
      Po>Pn33.9332.140.640.060.7433.34100.86
      Po>Pn34.0331.610.630.040.7033.33100.41
      Po>Pn33.6431.800.600.050.6733.1599.91
      Po>Pn33.4631.820.650.030.2633.3299.55
      Po>Pn33.9832.230.680.020.7733.34101.05
      Po>Pn32.1933.410.870.030.2933.0099.84
      Po>Pn31.7532.980.830.010.2732.8398.81
      Po>Pn31.9033.570.850.040.8433.65100.91
      Po>Pn30.9734.370.820.030.8233.07100.11
      Po>Pn31.3634.210.810.020.7633.15100.34
      Po>Pn33.6032.830.730.010.7933.47101.52
      Po>Pn33.4032.630.900.100.2633.49100.82
      zk16-22号矿体浸染状Po≈Pn30.5734.120.710.070.7733.4299.68
      Po≈Pn31.9333.721.260.180.8233.06100.98
      Po≈Pn34.4431.291.750.310.2633.45101.57
      Po≈Pn29.0436.470.970.140.3033.27100.27
      Po≈Pn29.9935.841.090.160.3233.11100.54
      Po>Pn28.8438.020.410.030.3233.21100.86
      Po>Pn30.0435.480.990.050.3233.35100.26
      Po>Pn30.5435.630.800.050.2933.22100.60
      Po>Pn28.8636.311.930.050.3133.00100.49
      Po>Pn28.0838.170.650.220.3133.45100.90
       注:“–”表示低于检测限。
      下载: 导出CSV

      表 4  黄铜矿和方黄铜矿矿电子探针分析结果(%)

      Table 4.  The EPMA result (%) of chalcopyrite and cubanite in the Jinchuan deposit

      钻孔编号矿体编号矿石类型矿物种属FeCuNiCoSTotal
      zk4-524号矿体星点状Cb41.0123.820.010.0635.0499.99
      Cb41.1623.500.0435.0999.83
      Ccp30.3534.700.0234.2999.37
      海绵陨铁状Cb41.7622.460.010.0635.2899.64
      Cb41.0723.390.090.0335.38100.01
      Cb44.0118.300.800.0835.0998.31
      zk12-51号矿体星点状矿石Ccp30.8134.850.0734.88100.65
      浸染状矿石Ccp30.6535.100.0334.72100.57
      Ccp30.5035.030.0434.77100.34
      海绵陨铁状Ccp30.2633.970.350.0535.1599.82
      Ccp30.1734.520.150.0434.9899.90
      Ccp30.0434.750.010.0434.4599.39
      Ccp30.6035.160.0234.87100.65
      Ccp30.1634.550.0335.20100.01
      Ccp30.6233.950.010.0133.8998.54
      Ccp30.7034.530.0134.75100.06
      Ccp31.1334.400.020.0334.71100.30
      zk16-22号矿体星点状矿化Cb42.8620.620.230.0534.6198.40
      浸染状矿石Cb41.0323.640.070.0634.8899.70
       注:“–”表示低于检测限。
      下载: 导出CSV
    • 参考文献(43)
    • 丁瑞颖. 甘肃金川镍铜铂岩浆硫化物矿床Ⅱ矿区矿物特征研究[M]. 西安:长安大学, 2012: 1−96

      DING Ruiying. Study on mineral characteristics of Segment Ⅱ, Jinchuan Ni-Cu(PGE) sulfide deposits, Gansu Province[M]. Xi’an: Chang’an University, 2012: 1−96.

      丰成友, 张德全, 党兴彦. 中国钴资源及其开发利用概况[J]. 矿床地质, 2004, 23(1): 93-100

      FENG Chengyou, ZHANG Dequan, DANG Xingyan. Cobalt resources of China and their exploration and utilization[J]. Mineral Deposit, 2004, 23(1): 93-100.

      甘肃省地质矿产局第六地质队. 白家咀子硫化铜镍矿床地质[M]. 北京: 地质出版社, 1984: 1−229.

      SGU(the sixth geological unit of the geological survey of Gansu Province). Geology of the Baijiazuizi Cu-Ni sulfide deposit[M]. Beijing: Geological Publishing House, 1984: 1−225.

      李仔栓. 甘肃金川铜镍矿矿相学、成矿与成矿关系研究[M]. 北京: 中国地质大学(北京), 2018: 1−47

      LI Zishuan. Study on the mineragraphy, relationship between diagenesis and mineralization on Jinchuan Copper-Nickel deposit in Gansu[M]. China University of Geosciences(Beijing), 2018: 1−47.

      刘超, 王亚磊, 张照伟, 等. 东昆仑夏日哈木矿床镍黄铁矿、磁黄铁矿成因认识及钴赋存特征[J]. 西北地质, 2020, 53(2): 183-199

      LIU Chao, WANG Yalei, ZHANG Zhaowei, et al. The Genetic significance of Pentlandite and Pyrrhotite and the characteristics of cobalt occurrence in Xiarihamu cobalt-nickel deposit of Eastern Kunlun[J]. Northwestern Geology, 2020, 53(2): 183-199.

      卢宜冠, 涂家润, 孙凯, 等. 中非赞比亚成矿带谦比希通钴矿床钴的赋存状态与成矿规律[J]. 地学前缘, 2021, 28(3): 338-354

      LU Yiguan, TU Jiarun, SUN Kai, et al. Cobalt occurrence and ore-forming process in the Chambishi deposit in the Zambian Copperbelt, Central Africa[J]. Earth Science Frontiers, 2021, 28(3): 338-354.

      慕纪录. 新疆哈密黄山铜镍矿床中浅富矿体特征及形成机制[J]. 矿物岩石, 1996, 16(1): 58-67

      MO Jilu. On the characteristics and forming mechanism of the rich and shallow-seated ores in the Huangshan Ni-Cu sulfide deposit, Hami, Xinjiang[J]. Mineral Petro, 1996, 16(1): 58-67.

      秦克章, 丁奎首, 许英霞, 等. 东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究[J]. 矿床地质, 2007, 26(1): 1-14 doi: 10.3969/j.issn.0258-7106.2007.01.001

      QIN Kezhang, DING Kuishou, XU Yingxia, et al. Ore potential of protoliths and modes of Co-Ni occurrence in Tulaergen and Baishiquan Cu-Ni-Co deposits, East Tianshan, Xinjiang[J]. Mineral Deposits, 2007, 26(1): 1-14. doi: 10.3969/j.issn.0258-7106.2007.01.001

      芮会超, 焦建刚, 靳树芳. 金川铜镍硫化物矿床磁黄铁矿矿物学特征及成因意义[J]. 矿床地质, 2017, 36(2): 501-514 doi: 10.16111/j.0258-7106.2017.02.015

      RUI Huichao, JIAO Jiangang, JIN Shufang. Typomorphic characteristics and genetic significance of pyrrhotite in Jinchuan Cu-Ni sulfide deposit[J]. Mineral Deposit, 2017, 36(2): 501-514. doi: 10.16111/j.0258-7106.2017.02.015

      孙燕, 帅德权, 慕纪录, 等. 新疆黄山铜镍成矿带中含镍系列矿物成分特征[J]. 成都理工学院学报, 1996, 23(2): 19-20

      SUN Yan, SHUAI Dequan, MU Jilu, et al. Composition characteristics of the nickel ferrous series in the Cu-Ni mineralization zone, Huangshan, Xinjiang[J]. Journal of Chengdu Institute Technology, 1996, 23(2): 19-20.

      汤中立, 李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社, 1995: 1−209

      TANG Zhongli, LI Wenyuan. The metallogenetic model and geological characteristics of the Jinchuan Pt-bearing Ni-Cu sulfide deposit[M]. Beijing: Geological Publishing House, 1995: 1−209.

      王辉, 丰成友, 张明玉. 全球钴矿资源特征及勘查研究进展[J]. 矿床地质, 2019, 38(4): 739-750.

      WANG Hui, FENG Chengyou, ZHANG Mingyu. Characteristics and exploration and research progress of global cobalt deposits[J]. Mineral Deposits, 2019, 38(4): 730-750.

      王焰, 钟宏, 曹勇华, 等. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65(33): 3825-3838 doi: 10.1360/TB-2020-0202

      WANG Yan, ZHONG Hong, CAO Yonghua, et al. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review[J]. Chinese Science Bulletin, 2020, 65(33): 3825-3838. doi: 10.1360/TB-2020-0202

      乌顿布格, 伯克. 金属矿物显微镜鉴定表[M]. 北京: 地质出版社, 1975

      W. U. E. A. Burke. Tables for Microscopic identification of ore minerals. Beijing: Geological Publishing House, 1975.

      徐昱, 王建平, 吴景荣. 我国钴资源现状及进口分析[J]. 矿业研究与开发, 2014, 34(5): 112-132

      XU Yu, WANG Jianping, WU Jingrong. Analysis on status of cobalt resources with its import and export in China[J]. Mining R&D, 2014, 34(5): 112-132.

      翟明国, 胡波. 矿产资源国家安全、国际争夺与国家战略之思考[J]. 地球科学与环境学报, 2021, 43(1): 1-11.

      ZHAI Mingguo, HU Bo. Thinking to state security, international competition and national strategy of mineral resources[J]. Journal of Earth Science and Environment, 2021, 43(1): 1-11.

      张宗清, 杜安道, 唐索寒, 等. 金川铜镍矿床年龄和源区同位素地球化学特征[J]. 地质学报, 2004, 78(3): 359-365. doi: 10.3321/j.issn:0001-5717.2004.03.009

      ZHANG Zongqing, DU Andao, TANG Suohan, et al. Age of the Jinchuan copper-nickel deposit and isotopic geochemical feature of its sources[J]. Acta Geological Sinica, 2004, 78(3): 359-365. doi: 10.3321/j.issn:0001-5717.2004.03.009

      赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24): 2484-2500 doi: 10.1360/N972019-00134

      ZHAO Junxing, LI Guangming, QIN Kezhang, et al. A review of the types and ore mechanism of the cobalt deposits[J]. Chinese Science Bulletin, 2019, 64(24): 2484-2500. doi: 10.1360/N972019-00134

      郑建平, 周新华. 华北岩石圈地幔岩石学研究进展[J]. 矿物岩石地球化学通报, 2013, 32(4): 392-401 doi: 10.3969/j.issn.1007-2802.2013.04.002

      ZHENG Jianping, ZHOU Xinhua. Research progress of petrology of the lithospheric mantle in North China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(4): 392-401. doi: 10.3969/j.issn.1007-2802.2013.04.002

      Arnold R G. Range in composition and structure of 82 natural terrestrial pyrrhotites[J]. Canadian Mineral, 1967, 9: 31-50.

      Aulbach S, Griffin W L, Pearson N J, et al. Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrystal[J]. Chemical Geology, 2004, 208: 61-88. doi: 10.1016/j.chemgeo.2004.04.006

      Barnes S J. Ripley E M. Highly siderophile and strongly chalcophile elements in magmatic ore deposits[J]. Reviews in Mineralogy&Geochemistry, 2016, 81: 725-774.

      Barnes S J. Zientek R A. Platinum-group element, gold, silver, and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril’sk, Russia[J]. Contribution to Mineral Petrology, 2006, 152: 187-200. doi: 10.1007/s00410-006-0100-9

      Chen L M, Song X Y, Danyushevsky L V, et al. A laser ablation ICP-MS study of platinum-group and chalcophile elements in base metal sulfide minerals of the Jinchuan Ni-Cu deposit, NW China[J]. Ore Geology Reviews, 2015, 65: 955-967. doi: 10.1016/j.oregeorev.2014.07.011

      Davies R M, Griffin W L, O’Reilly S Y, et al. Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, D018, DD17, and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos, 2004, 77: 39-55.

      Duan J, Li C, Qian Z Z, et al. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China. Miner Deposita, 2016, 51: 557−574.

      Etschmann B, Pring A, Putnis A, et al. A kinetic study of the exsolution of pentlandite (Ni, Fe) 9S8 from the monosulfide solid solution (Fe, Ni)S[J]. American Mineralogy, 2004, 89(1): 39–50. doi: 10.2138/am-2004-0106

      Gaetani G A, Groove T I. Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth and Mars[J]. Geochim, Gosmochim, Acta, 1997, 61: 1829-1846. doi: 10.1016/S0016-7037(97)00033-1

      Han Yixiao, Liu Yunhua, Li Wenyuan. Minerals in Xiarihamu nickel-cobalt deposit, East Kunlun Orogen, China[J]. Frontiers in Earth Science, 2021, 8: 597469.

      Helmy H M, Botcharnikov R, Ballhaus C, et al. Evolution of magmatic sulfide liquids: how and when base metal sulfide crystallize?[J]. Contribution to Mineralogy and Petrology, 2021, 176: 107. Doi:https://doi.org/ 10.1007/s00410-021-01868-4

      Hughes H S R, McDonald L, Faithfull J W, et al. Cobalt and precious metals in sulphides of peridotite xenoliths and inferences concerning their distribution according to geodynamic environment: A case study from the Scottish lithospheric mantle[J]. Lithos, 2016, 240-243: 202-227. doi: 10.1016/j.lithos.2015.11.007

      Li C, Ripley E M. Sulfur contents at sulfide-liquid or anhydrite saturation in silicate melts: empirical equations and example applications[J]. Economic Geology, 2009, 104: 405-412. doi: 10.2113/gsecongeo.104.3.405

      Li C, Ripley E M. The giant Jinchuan Ni-Cu-(PGE) deposit: tectonic setting, magma evolution, ore genesis and exploration implications[J]. Economic Geology, 2011, 17: 163-180.

      Li Y, Audétat A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions[J]. Earth Planetary Science Letter, 2012, 355–356: 327–340.

      Naldrett A J. Fundamentals of magmatic sulfide deposits. Review Economic Geology, 2011, 17: 1−50.

      Patten C, Barnes S J, Mathez E A, et al. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets[J]. Chemical Geology, 2013, 358: 170-188. doi: 10.1016/j.chemgeo.2013.08.040

      Peach C L, Mathez E A, Keays R R. Sulfide melt silicate melt distribution coefficients for noble-metals and other chalcophile elements as deduced from MORB-implication for partial melting[J]. Geochim. Gosmochim. Acta, 1990, 54: 3379-3389. doi: 10.1016/0016-7037(90)90292-S

      Pearson D G, Canil D, Shirey S B. Mantle samples included in volcanic rocks: xenoliths and diamonds, Treatise on Geochemistry, 2003, 2: 171−275.

      Rajamani V, Naldrett A J. Partitioning of Fe、Co、Ni、and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits[J]. Economic Geology, 1978, 73: 82-93. doi: 10.2113/gsecongeo.73.1.82

      Schulz K J, DeYoung J H, Seal R R, et al. Critical mineral resources of the United States—Economic and environment geology and prospects for future supply. US Geological Survey Professional Paper Series, 2018, 1802: 1−797.

      Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts[J]. Nature, 2006, 434: 590-597.

      Tang Z L, Song X Y, Su S G. Ni-Cu deposits related to high Mg basaltic magma, Jinchuan, western China. In: Li C, Ripley EM (eds) New developments in magmatic Ni-Cu and PGE deposits. Beijing : Geological Publishing House, 2009: 121−140.

      Wang K L, O’Reilly S Y, Honda M, et al. Co-rich sulfides in mantle peridotites from Penghu Islands, Taiwan: footprints of Proterozoic mantle plumes under the Cathaysia Block[J]. Journal of Asian Earth Sciences, 2010, 37: 229-245. doi: 10.1016/j.jseaes.2009.08.008

    • 相关文章
    • 施引文献
    • 资源附件(0)
    • 加载中
    WeChat 点击查看大图

    (9)

    (6)

    计量
    • 文章访问数:  994
    • PDF下载数:  35
    • 施引文献:  0
    出版历程
    收稿日期:  2022-10-13
    修回日期:  2023-02-20
    刊出日期:  2023-04-20
    PDF  查看

    返回顶部

    目录

      返回文章
      返回

      PHP网站源码坪地阿里店铺托管惠州seo优化南澳英文网站建设坪山seo排名坑梓营销网站石岩网站搜索优化坑梓网页制作坪山阿里店铺运营罗湖模板推广观澜模板网站建设大鹏百姓网标王广州SEO按天计费东莞阿里店铺托管观澜百搜标王福田seo网站优化布吉seo排名爱联模板网站建设西乡百度网站优化荷坳SEO按天扣费布吉标王南联外贸网站设计丹竹头网站排名优化塘坑企业网站改版惠州网站推广工具宝安网站优化横岗seo网站优化龙华网站建设荷坳SEO按天扣费福永seo网站推广观澜外贸网站建设歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

      PHP网站源码 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化