微生物学报  2022, Vol. 62 Issue (7): 2642-2657   DOI: 10.13343/j.cnki.wsxb.20210653.
http://dx.doi.org/10.13343/j.cnki.wsxb.20210653
中国科学院微生物研究所,中国微生物学会

文章信息

张慧杰, 廖思敏, 凌小翠, 冯家勋, 秦秀林. 2022
ZHANG Huijie, LIAO Simin, LING Xiaocui, FENG Jiaxun, QIN Xiulin.
毕赤酵母截短PGK1启动子与不同终止子组合调控外源基因表达
Truncated PGK1 promoter is paired with varied terminators to regulate heterologous gene expression in Pichia pastoris
微生物学报, 62(7): 2642-2657
Acta Microbiologica Sinica, 62(7): 2642-2657

文章历史

收稿日期:2021-10-28
修回日期:2022-01-15
网络出版日期:2022-06-27
毕赤酵母截短PGK1启动子与不同终止子组合调控外源基因表达
张慧杰 , 廖思敏 , 凌小翠 , 冯家勋 , 秦秀林     
广西大学生命科学与技术学院, 广西微生物与酶工程技术研究中心, 亚热带农业生物资源保护与利用国家重点实验室, 广西 南宁 530004
摘要[目的] 调控多基因表达对于优化代谢途径和合成生物学应用至关重要,构建不同的启动子和终止子组合,可作为毕赤酵母代谢途径改造和优化外源基因表达的有力分子调控工具。[方法] 首先,将毕赤酵母组成型磷酸甘油酸激酶基因的启动子PPGK1进行截短,构建截短启动子分别调控报告基因(绿色荧光蛋白基因egfp和β-半乳糖苷酶基因lacZ)表达的毕赤酵母重组菌。检测重组菌的报告基团转录水平、荧光强度和β-半乳糖苷酶产量。然后,构建了不同强度启动子和终止子组合(共27种组合)调控egfp表达的重组菌。最后,选取能调控基因高、中、低表达的6个启动子-终止子组合,调控β-呋喃果糖苷酶基因表达,构建β-呋喃果糖苷酶分泌表达的重组菌。[结果] 构建的截短启动子(PPPPPEPPGPPD)的强度是野生型启动子PPGK1的70%–190%,最强的启动子为PPD。分别与9个终止子组合时,PPGPPEPPD启动子驱动egfp基因表达的强度最高的和最低的相比分别达到4倍、7倍和10倍。6个启动子-终止子组合调控β-呋喃果糖苷酶分泌表达的重组菌胞外酶产量最高的和最低的相比可达6倍。[结论] 构建了不同的启动子-终止子组合,调控基因表达水平最高的和最低的相比达到10倍,可为优化毕赤酵母代谢工程和合成生物学应用中控制不同外源基因的表达量提供有力的分子工具。
关键词毕赤酵母    终止子    代谢工程    合成生物学    β-呋喃果糖苷酶    
Truncated PGK1 promoter is paired with varied terminators to regulate heterologous gene expression in Pichia pastoris
ZHANG Huijie , LIAO Simin , LING Xiaocui , FENG Jiaxun , QIN Xiulin     
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
Abstract: [Objective] Pichia pastoris (syn. Komagataella phaffii) has been extensively used as a versatile cell factory for the production of industrial enzymes and chemicals. However, well-tuned co-expression of multiple genes is a common challenge for P. pastoris in metabolic engineering and synthetic biology. Therefore, in this work, we constructed a set of terminators and paired them with varied promoters to tune the protein levels in P. pastoris. [Methods] We constructed the P. pastoris strains expressing reporter genes (egfp and lacZ) under the control of truncated constitutive 3-phosphoglycerate kinase (PGK1) promoters, and then measured the transcript levels of reporter genes, yEGFP fluorescence intensity and β-galactosidase activity of these strains. Next, we created a total of 27 promoter-terminator pairs to regulate the transcription of egfp, and used 6 promoter-terminator pairs to alter the secretory expression of β-fructofuranosidase (β-Ffase). [Results] The promoter activities of the truncated PPGK1 variants (PPP, PPE, PPG and PPD) relative to that of the native PPGK1 ranged from 70% to 190%. Furthermore, when paired with the weak promoter PPG, moderate promoter PPE, and strong promoter PPD, the terminators had the tuning ranges of 4, 7 and 10 folds (comparing between the strongest and weakest terminator), respectively. Finally, we demonstrated the utility of the promoter-terminator pairs for tuning the expression of the industrial enzyme β-Ffase, which showed an overall tuning range of 6 folds. [Conclusion] The promoter-terminator pairs constructed not only provide valuable information for understanding the modulatory roles of terminator regions in gene expression but also serve as a useful toolbox enabling the metabolic engineering of P. pastoris and the application of P. pastoris in synthetic biology.
Keywords: Pichia pastoris    terminator    metabolic engineering    synthetic biology    β-fructofuranosidase    

巴斯德毕赤酵母(Pichia pastoris,syn. Komagataella phaffii)具有高等真核表达系统的诸多优点,还可实现高密度发酵,且分泌到胞外的内源蛋白少[ 1],易于胞外目的蛋白分离纯化,已成为诸多药品、抗体和外源蛋白的表达平台[ 2 3],被广泛地应用于基础研究和工业生产。随着代谢工程和合成生物学的快速发展[ 4 5],毕赤酵母已成为新一代的细胞工厂,而控制基因表达对于优化代谢途径和合成基因网络调控至关重要。因此,挖掘毕赤酵母表达系统的基因表达调控工具迫在眉睫。

启动子、终止子和转录因子等是代谢途径和合成基因网络高效表达所需优化的重要调控元件。其中,启动子和终止子分别位于基因编码框上、下游并调控基因的转录速率和mRNA稳定性,它们的强度(活性)与靶基因编码的蛋白表达量直接相关。因此,通过启动子和终止子的改造,可以获得基因表达调控的有力工具。

启动子中含有转录因子(TFS)和其他转录调节因子结合的位点,在调控基因表达时起到关键作用,使其成为代谢工程和合成生物学工具包中的重要元件之一。在毕赤酵母中,通过改造获得序列更短、活性更高的启动子,可以提高重组菌的α-淀粉酶基因的表达水平[ 6]和南极假丝酵母来源的脂肪酶基因的表达量[ 7]。近期,Hansenula polymorpha来源的甲醇诱导型启动子PMOX也成功用于毕赤酵母表达系统中,并用于调控基因表达。Vogl等[ 8]筛选并构建了毕赤酵母的双向启动子(bidirectional promoter,BDP)文库,应用BDP文库对靶基因进行精确调控,优化了多基因的共表达,从而实现了紫杉二烯和β-胡萝卜素复杂合成代谢途径在酵母细胞中的整合。

终止子也是调控基因表达的重要组件,负责基因的转录终止、释放新生mRNA、调节mRNA的稳定性和半衰期。终止子主要通过调控mRNA的稳定性和半衰期,从而间接调节靶蛋白产量[ 9],终止子改造也逐渐应用到基因调控和代谢工程领域[ 10]。Rajkumar等[ 11]表征了30多个组成型和诱导型启动子、终止子,并将这些启动子和终止子进行组合,调控报告基因gfp的表达,构建了可应用于马克斯克鲁维酵母(Kluyveromyces marxianus)多基因调控的工具。在酿酒酵母(Saccharomyces cerevisiae)中,将终止子DIT1突变后,其活力增加了500%[ 12]。Yamanishi等[ 13]PTDH3为启动子和gfp为报告基因,检测了5 302个终止子的强度,这些终止子强度是对照终止子TPGK1的0.036到2.52倍,可作为酿酒酵母代谢工程改造的基因调控工具。为了挖掘可用于调控毕赤酵母中外源基因表达水平的终止子序列,Ito等[ 10]系统鉴定了72个终止子的强度,包括内源性的、酿酒酵母来源的和人工合成的终止子,这些终止子调控基因表达的强调可达到对照的17倍。

毕赤酵母中参与甲醇利用途径(methanol utilization pathway,MUT)、糖酵解途径(glycolysis pathway)和活性氧(reactive oxygen species,ROS)防御相关基因的表达量较高[ 14],这些基因的启动子和终止子可作为调控外源基因表达的有用工具。本研究对磷酸甘油酸激酶(phosphoglycerate kinase,PGK1)基因的启动子进行截短并对其强度进行鉴定。然后,选择了上述途径相关基因的终止子和毕赤酵母表达系统常用终止子进行强度表征。这9个终止子是:醇氧化酶(alcohol oxidase,ID:8201223)基因终止子TAOX1、醇脱氢酶(alcohol dehydrogenase,ID:8200841)基因终止子TADH2、甲醛脱氢酶(formaldehyde dehydrogenase,ID:8199001)基因终止子TFLD1、甲醇脱氢酶(formate dehydrogenase,ID:8200284)基因终止子TFDH1、过氧化氢酶(catalase,ID:8198267)基因终止子TCAT1、3-磷酸甘油醛脱氢酶(glyceraldehyde 3-phosphate dehydrogenase,ID:8198905)基因终止子TGAP、磷酸甘油酸激酶(phosphoglycerate kinase,ID:8197742)基因终止子TPGK1、转录增强因子(transcription elongation factor 1,ID:8198713)基因终止子TTEF1和酿酒酵母细胞色素C (cytochrome C,ID:853507)基因终止子TCYC1。将3个强度的启动子分别与不同终止子进行组合,选取其中6个组合(调控基因表达量最高和最低相比达到10倍),用于调控呋喃果糖苷酶(β-fructofuranosidases,β-Ffase)基因的表达。本工作构建的启动子-终止子组合可以实现目的基因的不同水平的表达,可作为毕赤酵母代谢途径优化和靶基因精确调控的有力工具。

1 材料与方法 1.1 菌株和培养基

毕赤酵母(Pichia pastoris)野生型菌株GS115保藏于本实验室。大肠杆菌(Escherichia coli)菌株Trans1-T1用于基因克隆。

LLB培养基(g/L):胰蛋白胨10,酵母提取物5,NaCl 10,使用时添加25 μg/mL Zeocin。固体培养基添加1.5%琼脂。

YPD培养基(g/L):胰蛋白胨20,酵母提取物10,葡萄糖20。

MD培养基:1.34%酵氮源基础(yeast nitrogen base,YNB),0.000 04%生物素,葡萄糖10 g/L,1.5%琼脂。

BMDY培养基(g/L):酵母提取物10,胰蛋白胨20,1.34% YNB,葡萄糖10,0.000 04%生物素,100 mmol/L K2HPO4/KH2PO4

BMD培养基:1.34% YNB,10 g/L葡萄糖,4×10–5%生物素,100 mmol/L磷酸钾,pH 6。

1.2 材料和试剂

质粒小规模提取试剂盒、通用型DNA纯化回收试剂盒、RNA提取试剂盒均购自TIANGEN公司;2×Phanta® Max Master Mix、2×Taq Plus Master Mix、Exnase Ⅱ工具酶均购自Vazyme公司;限制性内切酶和1 kb DNA Marker购自Thermo Fisher Scientific公司;T4 DNA Ligase、PrimeScript™ RT Reagent Kit with gDNA Eraser (Perfect Real Time)购自TaKaRa公司;ZeocinTM购自Invitrogen公司。

1.3 引物和质粒

本研究所用引物见 表 1,均由生工生物工程(上海)股份有限公司合成。

表 1. 本研究所用引物 Table 1. Primers used in this study
Primer names Primer sequences (5ʹ→3ʹ) Application
PGK1-F TCGACTAGTAGTTGGGTATTCAAATAGTTGACTT Amplification of the PGK1 promoter
PGK1-R AGAATGCGGCCGCTTTCGTAATCAATTGGGCTATG
PP-F AACTACCGCATTAGGATCTTCG Amplification of PPP
PD-F ACTAGTCGATCGCATTTTGGCCTCA Amplification of PPD
GFP-F AATGCGGCCGCATGTCTAAAGGTGAAGAATTATTC Amplification of the egfp gene
GFP-R CCCAAGCTTTTATTTGTACAATTCATCCATACC
BF-F AATGCGGCCGCATGCCCGTAGATTCTTCTCATAAG Amplification of the BF gene
BF-R CCCAAGCTTTCACCTGATCGCTATGCATG
TADH2-F CCCAAGCTTGCCGAATAGTTTGTATACGTCTT Amplification of the ADH2 terminator
TADH2-R CGCGGATCCTTTTAAAATTGAACGGCGACC
TCAT1-F CCCAAGCTTGCTAACTATATTTATTATTAATTAA Amplification of the CAT1 terminator
TCAT1-R CGCGGATCCGATTGTGACCTTTGTCTCTAT
TCYC1-F CCCAAGCTTCACGTCCGACGGCGGC Amplification of the CYC1 terminator
TCYC1-R CGCGGATCCAGCTTGCAAATTAAAGCCTTCGAG
TFDH1-F CCCAAGCTTTTGAAATGTATTTAATTTGATATTA Amplification of the FDH1 terminator
TFDH1-R CGCGGATCCACGATGTACAATCTGAGCTTG
TFLD1-F CCCAAGCTTGTGTATAGTCAATAATAGCCGGAGT Amplification of the FLD1 terminator
TFLD1-R CGCGGATCCATTAACTAAGAACAGCTTTTCCCG
TGAP-F CCCAAGCTTATCGATTTGTATGTGAAATAGCTG Amplification of the GAP terminator
TGAP-R CGCGGATCCGTTCAATTATAGATCCACGAGTG
TPGK1-F CCCAAGCTTTTAGTTCATATAGTTTGAATTCTGA Amplification of the PGK1 terminator
TPGK1-R CGCGGATCCCCGGTCCAGGCCATCA
TTEF1-F GGATGAATTGTACAAATAAAAGCTTATTGCTTGAAGCTTTAATTTATTT Amplification of the TEF1 terminator
TTEF1-R TGAAGCTATGGTGTGTGGGGGATCCACAGATTCATTGACTCTATGATCTC
RT-GAP-F CGGCATCTTCAGTGTAACCC Amplification of the GAP gene
RT-GAP-R GGCTTTCCGTGTCCCAAC
RT-GFP-F GGCTGACAAACAAAAGAATGG Amplification of the egfp gene
RT-GFP-R GGATAAGGCAGATTGAGTGGAT
RT-LacZ-F ATACTGTCGTCGTCCCCTCAAAC Amplification of the lacZ gene
RT-LacZ-R CGGATTCTCCGTGGGAACAA
RT-BF-F TGACCTCATCACCTGGAAAGA Amplification of the β-Ffase gene
RT-BF-R TGTGGTGGTCGCTTGTCAG
表选项

本研究构建的质粒见 表 2

表 2. 本研究所使用的质粒 Table 2. Plasmids used in this study
Plasmids Description Sources or references
pGHg The egfp gene expressing plasmid, PGAP-egfp-ZeoR-His4 [ 15]
pPHg Plasmid containing egfp gene under the control of the promoter PPGK1, PPGK1-egfp-ZeoR-His4 This study
pPPHg Plasmid containing egfp gene under the control of the truncated promoter PPP, PPP-egfp-ZeoR-His4 This study
pPEHg Plasmid containing egfp gene under the control of the truncated promoter PPE, PPE-egfp-ZeoR-His4 This study
pPGHg Plasmid containing egfp gene under the control of the truncated promoter PPG, PPG-egfp-ZeoR-His4 This study
pPDHg Plasmid containing egfp gene under the control of the truncated promoter PPD, PPD-egfp-ZeoR-His4 This study
pPHL Plasmid containing lacZ gene under the control of the promoter PPGK1, PPGK1-lacZ-ZeoR-His4 This study
pPPHL Plasmid containing lacZ gene under the control of the truncated promoter PPP, PPP- lacZ -ZeoR-His4 This study
pPEHL Plasmid containing lacZ gene under the control of the truncated promoter PPE, PPE- lacZ -ZeoR-His4 This study
pPGHL Plasmid containing lacZ gene under the control of the truncated promoter PPG, PPG- egfp -ZeoR-His4 This study
pPDHL Plasmid containing lacZ gene under the control of the truncated promoter PPD, PPD- 1acZ -ZeoR-His4 This study
pG-TPGK1 Plasmid containing egfp gene under the control of the truncated promoter PPG with terminator TPGK1, PPG-egfp-TPGK1-ZeoR-His4 This study
pG-TAOX1 Plasmid containing egfp gene under the control of the truncated promoter PPG with terminator TAOX1, PPG-egfp-TAOX1-ZeoR-His4 This study
pG-TTEF1 Plasmid containing egfp gene under the control of the truncated promoter PPG with terminator TTEF1, PPG-egfp- TTEF1-ZeoR-His4 This study
pG-TADH2 Plasmid containing egfp gene under the control of the truncated promoter PPG with terminator TADH2, PPG-egfp-TADH2-ZeoR-His4 This study
pG-TGAP Plasmid containing egfp gene under the control of the truncated promoter PG with terminator TGAP, PPG-egfp-TGAP-ZeoR-His4 This study
pG-TCYC1 Plasmid containing egfp gene under the control of the truncated promoter PPG with terminator TCYC1, PPG-egfp-TCYC1-ZeoR-His4 This study
pG-TFLD1 Plasmid containing egfp gene under the control of the truncated promoter PPG with terminator TFLD1, PPG-egfp-TFLD1-ZeoR-His4 This study
pG-TCAT1 Plasmid containing egfp gene under the control of the truncated promoter PPG with terminator TCAT1, PPG-egfp-TCAT1-ZeoR-His4 This study
pG-TFDH1 Plasmid containing egfp gene under the control of the truncated promoter PPG with terminator TFDH1, PPG-egfp-TFDH1-ZeoR-His4 This study
pE-TPGK1 Plasmid containing egfp gene under the control of the truncated promoter PPE with terminator TPGK1, PPE-egfp-TPGK1-ZeoR-His4 This study
pE-TAOX1 Plasmid containing egfp gene under the control of the truncated promoter PPE with terminator TAOX1, PPE-egfp-TAOX1-ZeoR-His4 This study
pE-TTEF1 Plasmid containing egfp gene under the control of the truncated promoter PPE with terminator TTEF1, PPE-egfp-TTEF1-ZeoR-His4 This study
pE-TADH2 Plasmid containing egfp gene under the control of the truncated promoter PPE with terminator TADH2, PPE-egfp-TADH2-ZeoR-His4 This study
pE-TGAP Plasmid containing egfp gene under the control of the truncated promoter PPE with terminator TGAP, PPE-egfp-TGAP-ZeoR-His4 This study
pE-TCYC1 Plasmid containing egfp gene under the control of the truncated promoter PPE with terminator TCYC1, PPE-egfp-TCYC1-ZeoR-His4 This study
pE-TFLD1 Plasmid containing egfp gene under the control of the truncated promoter PPE with terminator TFLD1, PPE-egfp-TFLD1-ZeoR-His4 This study
pE-TCAT1 Plasmid containing egfp gene under the control of the truncated promoter PPE with terminator TCAT1, PPE-egfp-TCAT1-ZeoR-His4 This study
pE-TFDH1 Plasmid containing egfp gene under the control of the truncated promoter PPE with terminator TFDH1, PPE-egfp-TFDH1-ZeoR-His4 This study
pD-TPGK1 Plasmid containing egfp gene under the control of the truncated promoter PPD with terminator TPGK1, PPD-egfp-TPGK1-ZeoR-His4 This study
pD-TAOX1 Plasmid containing egfp gene under the control of the truncated promoter PPD with terminator TAOX1, PPD-egfp-TAOX1-ZeoR-His4 This study
pD-TTEF1 Plasmid containing egfp gene under the control of the truncated promoter PPD with terminator TTEF1, PPD-egfp-TTEF1-ZeoR-His4 This study
pD-TADH2 Plasmid containing egfp gene under the control of the truncated promoter PPD with terminator TADH2, PPD-egfp-TADH2-ZeoR-His4 This study
pD-TGAP Plasmid containing egfp gene under the control of the truncated promoter PPD with terminator TGAP, PPD-egfp- TGAP-ZeoR-His4 This study
pD-TCYC1 Plasmid containing egfp gene under the control of the truncated promoter PPD with terminator TCYC1, PPD-egfp-TCYC1-ZeoR-His4 This study
pD-TFLD1 Plasmid containing egfp gene under the control of the truncated promoter PPD with terminator TFLD1, PPD-egfg-TFLD1 -ZeoR-His4 This study
pD-TCAT1 Plasmid containing egfp gene under the control of the truncated promoter PPD with terminator TCAT1, PPD-egfp-TCAT1-ZeoR-His4 This study
pD-TFDH1 Plasmid containing egfp gene under the control of the truncated promoter PPD with terminator TFDH1, PPD-egfp-TFDH1-ZeoR-His4 This study
pD-BF-TG Plasmid containing PoFF32A gene under the control of the truncated promoter PPD with terminator TGAP, PPD-BF-TGAP-ZeoR-His4 This study
pD-BF-TP Plasmid containing PoFF32A gene under the control of the truncated promoter PPD with terminator TPGK1, PPD-BF-TPGK1-ZeoR-His4 This study
pD-BF-TT Plasmid containing PoFF32A gene under the control of the truncated promoter PPD with terminator TTEF1, PPD-BF-TTEF1-ZeoR-His4 This study
pG-BF-TA Plasmid containing PoFF32A gene under the control of the truncated promoter PPG with terminator TAOX1, PPG-BF-TAOX1-ZeoR-His4 This study
pE-BF-TA Plasmid containing PoFF32A gene under the control of the truncated promoter PPE with terminator TAOX1, PPD-BF-TAOX1-ZeoR-His4 This study
pD-BF-TA Plasmid containing PoFF32A gene under the control of the truncated promoter PPD with terminator TAOX1, PPD-BF-TAOX1-ZeoR-His4 This study
表选项

1.4 截短启动子调控报告基因表达的毕赤酵母重组菌的构建

以毕赤酵母GS115基因组总DNA为模板,PCR扩增启动子PPGK1,将PPGK1克隆至载体pGHg[ 15]SpeⅠ/NotⅠ位点,替换PGAP1启动子,获得酵母增强型绿色荧光蛋白基因egfp表达质粒pPHg。利用PCR和酶切的方法,简单快速地将启动子PPGK1序列进行截短。首先PCR扩增5ʹ端截短启动子PPP (1.3 kb),用PPP替换载体pPHg中的PPGK1启动子构建质粒pPPHg。然后,质粒pPPHg经Cla Ⅰ酶切后自连,获得含截短启动子PPE (1.1 kb)的质粒pPEHg;质粒pPEHg经Xho Ⅰ酶切后自连,获得含截短启动子PPG (866 bp)的质粒pPGHg。根据已发表的截短的PGK1启动子PPD3序列[ 6],用引物PD-F/ PGK1-PCR扩增获得截短启动子PPD (与PPD3序列比对,缺失第380 bp位碱基C)。将PPD替换载体pPHg中的PPGK1构建质粒pPDHg。将重组质粒pPHg、pPPHg、pPEHg、pPGHg、pPDHg分别用Sal Ⅰ线性化后电击法转化菌株GS115,构建表达报告基因egfp的重组毕赤酵母。

Not Ⅰ/Hind Ⅲ双酶切质粒pGHL[ 15],获得lacZ基因片段并克隆到质粒pPHg、pPPHg、pPEHg、pPGHg、pPDHg的Not Ⅰ/Hind Ⅲ位点,替换其中的egfp基因,构建lacZ基因的表达质粒pPHL、pPPHL、pPEHL、pPGHL、pPDHL。将重组质粒分别用Sal Ⅰ线性化后电击法转化GS115,构建表达报告基因lacZ的重组毕赤酵母。本研究所构建质粒见 表 2

1.5 不同启动子和终止子组合调控外源基因表达重组菌构建

为了便于终止子的克隆,先构建质粒pPGHG,在终止子5ʹ和3ʹ端分别加上Hind Ⅲ和BamH Ⅰ酶切位点,便于后续终止子替换。首先,以PPG为启动子,构建含不同终止子的系列egfp表达载体pG-Tx (Tx代表终止子:TADH2TFLD1TPGK1TGAPTCAT1TCYC1TFDH1TTEF1)。以pGHG为模板,用引物TCYC1-F/TCYC1-R扩增TCYC1序列;其他7个终止子用GS115总DNA为模板扩增获得。最后,将8个终止子序列分别替换载体pPGHG上的TAOX1,构建系列重组质粒pG-Tx。用PPE启动子替换质粒pG-TT上的PPG启动子,构建含不同终止子的系列载体pE-Tx。用PPD启动子替换质粒pG-TT上的PPG启动子,构建含不同终止子的载体pD-Tx。质粒pG-Tx经Sal Ⅰ线性化后电击法转化GS115,构建重组菌G-ADH2、G-FLD1、G-PGK1、G-GAP、G-CAT1、G-CYC1、G-FDH1、G-TEF1。

以质粒pPIC9k-PoFF32A[ 16]为模板,用引物BF-F/BF-R扩增含信号肽编码序列的呋喃果糖苷酶(β-Ffase)基因PoFF32A序列,将该序列克隆到pD-Tx (Tx=TGAP1TPGK1TTEF1)、pG-TAOX1、pE-TAOX1和pD-TAOX1质粒的Not Ⅰ/ Hind Ⅲ位点,替换原质粒上的egfp,分别构建PoFF32A表达质粒pD-BF-TG、pD-BF-TP、pD-BF-TT、pG-BF-TA、pE-BF-TA和pD-BF-TA。将重组质粒经Sal Ⅰ线性化后电击法转化GS115,构建表达β-Ffase基因并使产物分泌的重组毕赤酵母菌株:PD-TG、PD-TP、PD-TT、PG-TA、PE-TA和PD-TA。

1.6 重组毕赤酵母的yEGFP荧光强度测定

毕赤酵母重组菌经48孔深孔板高能量培养[ 17],BMD培养基28、340 r/min培养36 h后,取30 μL菌液至装有170 μL PBS的96孔酶标板中,使用多功能酶标仪(BioTek Synergy H1)检测GFP荧光强度(激发波长:485 nm,发射波长:515 nm,增益:90)。检测GFP荧光强度时,以不表达egfp的重组菌G/PEH为对照除去背景干扰。荧光强度F/OD600 (RFU/OD600)为荧光值与对应细胞密度OD600的比值,以荧光强度表征启动子或终止子强度。

1.7 重组毕赤酵母中基因转录水平的检测

将重组毕赤酵母菌在YPD液体培养基中培养36 h后,用RNA提取试剂盒提取重组毕赤酵母菌的总RNA,然后用PrimeScriptTM RT reagent Kit with gDNA Eraser (Perfect Real Time)试剂盒反转录获得cDNA。最后用SYBR® Premix Ex TaqⅡ (Tli RNaseH Plus)(2×)进行RT-qPCR,以GAPDH基因作为内参基因,RT-qPCR所用引物见 表 1

1.8 重组毕赤酵母摇瓶培养产β-Ffase

将重组毕赤酵母菌株在YPD平板培养,28培养到长出单菌落;挑取单菌落于含有5 mL YPD培养基的试管中活化过夜;以4%的接种量接种于含50 mL BMDY培养基的500 mL三角瓶中,250 r/min、28培养60 h,每隔12 h取样测定OD600和β-Ffase活力,补加葡萄糖至终浓度为1%、pH试纸测定pH值并用5 mol/L KOH调pH至6.0左右。

1.9 呋喃果糖苷酶酶活检测

重组毕赤酵母的呋喃果糖苷酶(β-Ffase)酶活测定采用DNS法[ 16],以0.2 mol/L柠檬酸-磷酸缓冲液(pH 5.5)稀释粗酶液,以20%蔗糖为底物,于40反应15 min。每分钟从蔗糖底物中释放出1 μmol还原糖所需的酶量定义为1个酶活力单位。

重组毕赤酵母的β-半乳糖苷酶(β-galactosidase,Gal)酶活力测定参照毕赤酵母表达系统操作手册(Pichia expression kit,Invitrogen)。酶活力单位指在28条件下,每分钟水解1 nmol ONPG (o-nitrophenyl-β-D-galactopyranoside)所需的酶量。

2 结果与分析 2.1 截短PGK1启动子构建及强度表征

毕赤酵母3-磷酸甘油酸激酶(3-phosphoglycerate kinase,PGK1)基因启动子(PPGK1)是组成型强度中等的启动子[ 18],其序列较长(约2 kb)不便于表达框的构建和启动子的改造。因此,在避免启动子活性降低的情况下,截短了PPGK1序列,构建了启动子PPPPPEPPGPPD ( 图 1A)。

图 1 PPGK1截短启动子构建及其在毕赤酵母中驱动egfp基因表达的强度的表征 Figure 1 Construction of the truncated PPGK1 variants and characterization of their strength in driving the expression of gene egfp in P. pastoris. A: schematic representation of the construction of the truncated promoters; B: initial characterization of the truncated promoters using egfp as reporter gene.
图选项

利用启动子PPPPPEPPGPPD驱动基因egfp在毕赤酵母中的表达,通过检测毕赤酵母重组菌的yEGFP比荧光强度表征对应启动子强度。含不同启动子重组菌的比荧光强度与egfp的mRNA水平相关,说明重组菌之间绿色荧光蛋白水平的差异是由mRNA水平的差异引起的,且启动子的强度由强至弱依次为:PPDPPEPPPPPGK1PPG。与野生型启动子PPGK1相比,PPG启动子强度下降了30%;PPPPPEPPD启动子强度分别提高了约10%、40%、90%;4个截短启动子的强度是启动子PPGK1的70%–190%;这4个启动子调控表达的yEGFP荧光强度,强启动子PPD是弱启动子PPG的2.7倍;在不同启动子调控下,yEGFP荧光强度与egfp的mRNA水平相关( 图 1B)。

以β-半乳糖苷酶(β-galactosidase, Gal)基因(lacZ)为第二报告基因,对截短启动子可靠性和适用性进行验证。在启动子PPGPPPPPEPPD的调控下,Gal的酶产量随着启动子强度的增加而增加,Gal酶产量变化范围与yEGFP荧光强度的基本一致(达到野生型PPGK1启动子强度的65%–170%);这4个启动子调控表达的Gal酶产量,强启动子PPD是弱启动子PPG的2.6倍;不同启动子调控下,Gal酶产量与lacZ的mRNA水平相关( 图 2)。

图 2 不同截短启动子构建的重组菌的β-半乳糖苷酶基因表达水平和酶产量的检测 Figure 2 Measurement of β-galactosidase (Gal) production and lacZ mRNA level under the control of the truncated promoters (PPG, PPE and PPD) in the engineered P. pastoris strains.
图选项

利用2个报告基因对截短启动子进行了系统表征,证实截短启动子PPEPPGPPD对不同基因表达调控的普遍适用性。与野生型启动子PPGK1相比,PPGPPEPPD长度分别缩短了57%、45%和79%;PPGPPEPPD启动子强度约是PPGK1的70%、140%和180%。

2.2 弱启动子和不同终止子组合调控egfp的表达

毕赤酵母Mut途径、PPP途径和ROS途径的基因表达量较高,这些基因的终止子可以作为调控靶基因过表达的调控元件[ 14]。我们选取了3个强度的组成型启动子PPG (弱)、PPE (中)和PPD (强)分别与9个终止子TX (TX代表:TAOX1TADH2TFLD1TPGK1TGAPTCAT1TCYC1TFDH1TTEF1)进行组合,调控egfp的表达,以研究不同强度启动子与终止子组合调控靶基因表达的能力。对应重组菌(G-TX、E-TX和D-TX)构建过程如 图 3A所示。通过检测报告蛋白yEGFP荧光强度,研究不同启动子-终止子组合调控外源基因表达的能力。

图 3 弱启动子PPG与不同终止子组合调控egfp基因表达的毕赤酵母重组菌的荧光强度检测 Figure 3 Fluorescence output of Pichia pastoris recombinants expressing egfp gene under the control of the weaker promoter PPG paired with various terminators. A: schematic diagram of the construction of P. pastoris recombinants expressing egfp gene under control of varied promoter paired with 9 terminators; B: box plot diagram of yEGFP fluorescence of G-Tx transformants; C: egfp transcript abundance versus yEGFP fluorescence intensity are plotted.
图选项

我们构建了弱启动子PPG分别与9个终止子组合调控egfp表达的重组菌G-TX,每个组合分别挑选10个转化子,利用48深孔板培养36 h,检测其荧光强度并进行统计分析。在9个终止子中,启动子PPGTPGK1TAOX1组合时,重组菌yEGFP荧光强度最高;其次是与TTEF1组合;与TCAT1TFDH1的组合调控能力最弱( 图 3B)。

分别选取各组合重组菌中荧光强度最高且egfp基因拷贝数为1的3个转化子用摇瓶培养进行复筛,设3次生物学重复。重组菌G-TX摇瓶培养36 h,测定yEGFP荧光强度,提取RNA检测egfp基因转录水平。PPG为截短的PGK1基因启动子,将PPG与自身基因终止子TPGK1组合(PPG-TPGK1)作为对照,比较各组合调控egfp表达的强度。摇瓶培养后检测结果显示,各组合重组菌G-Tx的荧光强度与48深孔板初筛结果基本一致( 图 3C)。PPG与9个终止子组合调控强度由高到低为:TPGK1TAOX1TTEF1TADH2TGAPTCYC1TFLD1TCAT1TFDH1。各组合调控的egfp转录水平与yEGFP荧光强度相关性较好,调控强度是对照组合(PPG-TPGK1)的25%–100% ( 表 3);其中PPG-TPGK1组合的强度是PPG-TFDH1组合的4倍,即PPG-TX组合的调控范围跨度为4倍。

表 3. 启动子-终止子组合调控egfp表达重组菌的相对荧光强度 Table 3. Relative fluorescence intensity from egfp expression strains with different promoter and terminator cassette
Promoters Terminators
TAOX1 TADH2 TGAP TCAT1 TPGK1 TCYC1 TFLD1 TTEF1 TFDH1
PPG 93% 75% 74% 31% 100% 55% 34% 81% 29%
PPE 220% 142% 109% 105% 100% 88% 83% 55% 41%
PPD 248% 180% 148% 78% 100% 78% 76% 46% 33%
Fluorescence intensity relative to TPGK1.
表选项

2.3 中强度启动子和不同终止子组合调控egfp的表达

构建中强度启动子PPE与9个终止子组合调控egfp表达的重组菌E-TX,每个组合分别挑选10个转化子,通过48深孔板培养检测其荧光强度。初筛结果显示,在PPE调控下,与终止子TAOX1TADH1的组合,重组菌yEGFP荧光强度显著高于其他组合重组菌;与TTEF1TFDH1的组合调控能力最弱( 图 4A)。各组合重组菌E-TX摇瓶复筛结果与48深孔板初筛结果基本一致。PPE与9个终止子组合调控强度由高到低为:TAOX1TADH2TGAPTCAT1TPGK1TCYC1TFLD1TTEF1TFDH1。各组合调控的egfp转录水平与yEGFP荧光强度相关性较好,调控强度是对照组合(PPE-TPGK1)的30%–210% ( 表 3);其中PPE-TAOX1组合的强度是PPE-TFDH1组合的7倍,即PPE-TX组合的调控范围跨度为7倍。

图 4 中强度启动子PPE与不同终止子组合调控egfp表达的毕赤酵母重组菌的荧光强度检测 Figure 4 Fluorescence output of recombinant Pichia pastoris expressing egfp gene under the control of the moderate strength promoter PPG paired with varied terminators. A: box plot diagram of yEGFP fluorescence of E-Tx transformants; B: egfp transcript abundance versus yEGFP fluorescence intensity are plotted.
图选项

2.4 强启动子和不同终止子组合调控egfp的表达

构建强启动子PPD与9个终止子组合调控egfp表达的重组菌D-TX,每个组合分别挑选10个转化子,通过48深孔板培养检测其荧光强度。初筛结果显示,在PPD调控下,与终止子TAOX1TADH1的组合,重组菌yEGFP荧光强度显著高于其他组合重组菌;与终止子TTEF1TFDH1的组合,调控能力最弱( 图 5A)。各组合重组菌E-TX摇瓶复筛结果与48深孔板初筛结果基本一致。PPD与9个终止子组合调控强度与PPE启动子的结果相似。各组合调控的egfp转录水平与yEGFP荧光强度相关性较好,调控强度是对照组合(PPD-TPGK1)的25%–250% ( 表 3);其中PPD-TAOX1组合的强度是PPD-TFDH1组合的10倍,即PPG-TX组合的调控范围跨度为10倍。

图 5 强启动子PPD与不同终止子组合调控egfp表达的毕赤酵母重组菌的荧光强度检测 Figure 5 Fluorescence output of recombinant Pichia pastoris expressing egfp gene under the control of the strong promoter PPD paired with varied terminators. A: box plot diagram of yEGFP fluorescence of D-Tx transformants; B: egfp transcript abundance versus yEGFP fluorescence intensity are plotted.
图选项

2.5 不同启动子和终止子组合调控外源蛋白分泌表达

来源于草酸青霉(Penicillium oxalicum)菌株GXU20的呋喃果糖苷酶(β-fructofuranosidase,β-Ffase)能高效转移果糖生成新低聚果糖(neo-fructooligosaccharides,neo-FOS)[ 16]。Neo-FOS较其他FOS甜度更高,在双歧杆菌增殖方面表现更优异,其市场需求与日俱增。利用毕赤酵

母分泌表达β-Ffase,可为neo-FOS生产奠定基础。因此,以来源于草酸青霉的β-Ffase作为模式蛋白,研究不同启动子-终止子组合对外源基因的调控能力。从上述27个组合中,我们选取调控范围跨度较大的6个组合(PPG-TAOX1PPE-TAOX1PPD-TAOX1PPD-TGAP1PPD-TPGK1PPD-TTEF1)进一步验证。这6个组合在调控egfp表达时,yEGFP荧光强度最高的和最低的相比达到10倍。将这6个组合用于调控β-Ffase分泌表达,构建对应重组菌:PG-TA、PE-TA、PD-TA、PD-TG、PD-TP和PD-TT。

各组合重组菌摇瓶培养实验结果表明,不同强度启动子与终止子组合调控β-Ffase基因(PoFF32A)表达,不影响重组菌的生长( 图 6A)。强启动子PPD与不同终止子组合时,随着终止子强度增强,β-Ffase酶产量呈上升趋势;强终止子TAOX1与不同启动子组合时,随着启动子强度增强β-Ffase酶产量也呈上升趋势( 图 6B)。各组合调控的PoFF32A转录水平与β-Ffase酶产量相关性较好,调控范围在对照组合PD-TP (PPD-TPGK1)的30%–180%;其中最强组合PD-TA的胞外β-Ffase酶产量是最弱组合PD-TT的6倍( 图 6C)。

图 6 启动子与终止子组合调控β-Ffase在毕赤酵母中的分泌表达 Figure 6 Influence of promoter and terminator combinations on β-Ffase secretory expression in Pichia pastoris. A: growth of recombinant strains expressing PoFF32A gene using under the control of varied promoter paired with TPGK1 or TAOX1 terminator; B: extracellular β-Ffase activity of recombinant strains in shake flask; C: PoFF32A transcript abundance versus β-Ffase activity are plotted; D: yEGFP fluorescence versus β-Ffase activity are plotted.
图选项

在同一系列启动子-终止子组合调控下,egfp基因表达水平与PoFF32A基因表达水平相关性较好;yEGFP基因表达水平的调控范围达到10倍,而β-Ffase分泌表达水平的调控范围相对变窄,仅达到6倍( 图 6D)。结果表明,这些组合对不同基因具有较一致的调控能力,均能实现对目的基因的较强的表达调控,不管其表达产物是在胞内还是在胞外,可作为代谢工程改造的有力基因调控工具。

3 讨论

控制基因表达对于优化代谢途径和合成基因网络至关重要。近几年,研究人员展示了合成生物学组件(主要是启动子和终止子)在酵母表达系统中的潜在适用性和应用前景[ 19]。毕赤酵母可利用的启动子和终止子有限,而代谢工程改造常涉及多个基因的表达调控,这就无法避免相同启动子和终止子序列的多次使用,导致细胞内重复序列发生同源重组,造成遗传的不稳定,影响内源和外源基因表达。构建强度和序列不同的启动子和终止子组合,可作为毕赤酵母代谢途径改造和合成生物应用的有力工具。

本研究构建了毕赤酵母截短的PGK1启动子PPEPPGPPD,这些组成型启动子强度是野生型启动子强度的70%–190%,其中强启动子PPD强度是弱启动子PPG的2.7倍。这些启动子的长度较PPGK1缩短了至少45%,便于启动子的改造和外源基因表达框的构建。Arruda等[ 6]报道的截短PGK1启动子(PPD3),其强度与PPGK1相比无差异。相同启动子表征的强度不同,主要原因可能是:两个研究中启动子所调控表达的基因不同,本研究用yEGFP荧光强度和Gal酶产量来表征启动子强度,而Arruda等用胞外α-淀粉酶产量表征;报告基因表达框整合位点也不同,本研究中表达框整合在基因组的His4基因位点,Arruda等将表达框整合在PGK1基因位点。已有研究发现,外源基因整合位点会影响毕赤酵母重组蛋白的产量[ 20]

我们选取了毕赤酵母的9个终止子,分别与弱(PPG)、中(PPE)和强(PPD)启动子组合调控外源基因的表达,这27个组合可以在较宽广的范围实现基因的连续调控。分别与9个终止子组合时,PPGPPEPPD启动子调控egfp基因表达水平最高的和最低的比分别达到4倍、7倍和10倍,强启动子的调控强度变化范围远大于弱、中启动子的。同一终止子分别与3个启动子组合时,大部分终止子与强启动子组合的调控强度高于与弱、中启动子组合的。这说明,当强启动子与不同终止子组合调控时,启动子通过影响基因的转录水平来调控基因表达,且发挥着主导作用。同一启动子与不同终止子组合调控时,重组菌的egfp基因转录水平与yEGFP荧光强度相关性较好,这说明终止子通过影响基因的mRNA量来调控基因的表达,而mRNA量的变化很可能与终止子调控mRNA半衰期有关[ 13]。本研究也表征了一个酿酒酵母的常用终止子TCYC1,在毕赤酵母表达系统中TCYC1强度比大多数内源性终止子弱,尽管其在酿酒酵母中具有较高的强度[ 21]。这很可能是因为,在酿酒酵母和毕赤酵母中,基因表达的调节机制不同。

启动子工程应用于代谢工程改造和合成生物学的相关研究已有较多报道,但对于终止子及其与启动子组合调控的研究较少。我们构建的这些启动子-终止子组合在调控不同基因(egfplacZ)表达时都有效,从中选择了6个组合用于调控β-Ffase的分泌表达,以验证其调控基因表达能力。在这6个启动子-终止子组合调控下,胞内表达的yEGFP和Gal酶产量变化范围达到10倍(对照组合的25%–250%),而分泌表达的β-Ffase酶产量变化范围变窄,仅为6倍(对照组合的30%–180%)。这是因为,与胞内表达相比,胞外表达重组酶的酶产量不仅与其编码基因的mRNA量相关,分泌途径中的蛋白质折叠、修饰、降解和转运都影响着其最终酶产量的高低[ 22]。同一系列启动子-终止子组合调控下,胞外的β-Ffase还要经历复杂的分泌途径。在这个过程中部分重组酶β-Ffase很可能来不及折叠而被降解,或转运、分泌速率较低而滞留胞内,最终导致胞外酶产量比实际的总酶产量低。上述结果证明,通过选择合适的启动子-终止子组合,可以达到目的蛋白的较高表达量。因此,我们通过构建和检测不同的启动子-终止子组合,可以实现目的基因的不同水平的表达,获得了毕赤酵母代谢途径优化和靶基因精确调控的有力工具。

References
[1] Mattanovich D, Graf A, Stadlmann J, Dragosits M, Redl A, Maurer M, Kleinheinz M, Sauer M, Altmann F, Gasser B. Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microbial Cell Factories, 2009, 8: 29. DOI:10.1186/1475-2859-8-29
[2] Zhu TC, Sun HB, Wang MY, Li Y. Pichia pastoris as a versatile cell factory for the production of industrial enzymes and chemicals: current status and future perspectives. Biotechnology Journal, 2019, 14(6): 1800694. DOI:10.1002/biot.201800694
[3] Virdi V, Palaci J, Laukens B, Ryckaert S, Cox E, Vanderbeke E, Depicker A, Callewaert N. Yeast-secreted, dried and food-admixed monomeric IgA prevents gastrointestinal infection in a piglet model. Nature Biotechnology, 2019, 37(5): 527-530. DOI:10.1038/s41587-019-0070-x
[4] Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnology Advances, 2021, 47: 107695. DOI:10.1016/j.biotechadv.2021.107695
[5] Peña DA, Gasser B, Zanghellini J, Steiger MG, Mattanovich D. Metabolic engineering of Pichia pastoris. Metabolic Engineering, 2018, 50: 2-15. DOI:10.1016/j.ymben.2018.04.017
[6] Arruda A, Reis VCB, Batista VDF, Daher BS, Piva LC, De Marco JL, De Moraes LMP, Torres FAG. A constitutive expression system for Pichia pastoris based on the PGK1 promoter. Biotechnology Letters, 2016, 38(3): 509-517. DOI:10.1007/s10529-015-2002-2
[7] Nong LY, Zhang YM, Duan YH, Hu SL, Lin Y, Liang SL. Engineering the regulatory site of the catalase promoter for improved heterologous protein production in Pichia pastoris. Biotechnology Letters, 2020, 42(12): 2703-2709. DOI:10.1007/s10529-020-02979-x
[8] Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler EM, Baumschlager A, Fischer JE, Hyden P, Wagner M, Baumann M, Borth N, Geier M, Ajikumar PK, Glieder A. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nature Communications, 2018, 9: 3589. DOI:10.1038/s41467-018-05915-w
[9] Curran KA, Karim AS, Gupta A, Alper HS. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metabolic Engineering, 2013, 19: 88-97. DOI:10.1016/j.ymben.2013.07.001
[10] Ito Y, Terai G, Ishigami M, Hashiba N, Nakamura Y, Bamba T, Kumokita R, Hasunuma T, Asai K, Ishii J, Kondo A. Exchange of endogenous and heterogeneous yeast terminators in Pichia pastoris to tune mRNA stability and gene expression. Nucleic Acids Research, 2020, 48(22): 13000-13012. DOI:10.1093/nar/gkaa1066
[11] Rajkumar AS, Varela JA, Juergens H, Daran JMG, Morrissey JP. Biological parts for Kluyveromyces marxianus synthetic biology. Frontiers in Bioengineering and Biotechnology, 2019, 7: 97. DOI:10.3389/fbioe.2019.00097
[12] Ito Y, Kitagawa T, Yamanishi M, Katahira S, Izawa S, Irie K, Furutani-Seiki M, Matsuyama T. Enhancement of protein production via the strong DIT1 Terminator and two RNA-binding proteins in Saccharomyces cerevisiae. Scientific Reports, 2016, 6: 36997. DOI:10.1038/srep36997
[13] Yamanishi M, Ito Y, Kintaka R, Imamura C, Katahira S, Ikeuchi A, Moriya H, Matsuyama T. A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a terminatome toolbox. ACS Synthetic Biology, 2013, 2(6): 337-347. DOI:10.1021/sb300116y
[14] Vogl T, Sturmberger L, Kickenweiz T, Wasmayer R, Schmid C, Hatzl AM, Gerstmann MA, Pitzer J, Wagner M, Thallinger GG, Geier M, Glieder A. A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synthetic Biology, 2016, 5(2): 172-186. DOI:10.1021/acssynbio.5b00199
[15] Qin XL, Qian JC, Yao GF, Zhuang YP, Zhang SL, Chu J. GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Applied and Environmental Microbiology, 2011, 77(11): 3600-3608. DOI:10.1128/AEM.02843-10
[16] Xu QS, Zheng XQ, Huang MP, Wu M, Yan YS, Pan JM, Yang Q, Duan CJ, Liu JL, Feng JX. Purification and biochemical characterization of a novel β-fructofuranosidase from Penicillium oxalicum with transfructosylating activity producing neokestose. Process Biochemistry, 2015, 50(8): 1237-1246. DOI:10.1016/j.procbio.2015.04.020
[17] Qin X, Qian J, Xiao C, Zhuang Y, Zhang S, Chu J. Reliable high-throughput approach for screening of engineered constitutive promoters in the yeast Pichia pastoris. Letters in Applied Microbiology, 2011, 52(6): 634-641. DOI:10.1111/j.1472-765X.2011.03051.x
[18] De Almeida JRM, De Moraes LMP, Torres FAG. Molecular characterization of the 3-phosphoglycerate kinase gene (PGK1) from the methylotrophic yeast Pichia pastoris. Yeast, 2005, 22(9): 725-737. DOI:10.1002/yea.1243
[19] Zhao Y, Zhao YK, Liu SQ, Li J, Li SL, Xiao DG, Yu AQ. Advances in molecular genetics and synthetic biology tools in unconventional yeasts. Acta Microbiologica Sinica, 2020, 60(8): 1574-1591. (in Chinese)
赵禹, 赵雅坤, 刘士琦, 李建, 李圣龙, 肖冬光, 于爱群. 非常规酵母的分子遗传学及合成生物学研究进展. 微生物学报, 2020, 60(8): 1574-1591.
[20] Schwarzhans JP, Wibberg D, Winkler A, Luttermann T, Kalinowski J, Friehs K. Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization. Microbial Cell Factories, 2016, 15: 84. DOI:10.1186/s12934-016-0486-7
[21] Curran KA, Morse NJ, Markham KA, Wagman AM, Gupta A, Alper HS. Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synthetic Biology, 2015, 4(7): 824-832. DOI:10.1021/sb5003357
[22] Sun ZH, Brodsky JL. Protein quality control in the secretory pathway. The Journal of Cell Biology, 2019, 218(10): 3171-3187. DOI:10.1083/jcb.201906047

PHP网站源码罗湖优秀网站设计大浪百度seo爱联模板制作大鹏网站设计丹竹头seo网站优化松岗英文网站建设布吉推广网站横岗外贸网站制作民治百度标王民治SEO按天收费平湖百度竞价平湖网站设计模板罗湖企业网站制作福田关键词按天扣费南澳建设网站沙井网站搭建塘坑阿里店铺托管盐田网站建设设计双龙网页制作龙华网站关键词优化福永网站优化松岗网站搭建福田关键词排名包年推广大浪网站优化按天计费南澳关键词按天计费南澳百度网站优化排名松岗seo优化福永网站建设设计大运百度竞价吉祥百度关键词包年推广歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

PHP网站源码 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化